Wood Decay

Wood decay (wood rot) is decomposition of wood by microorganisms, primarily by enzymatic activity. For practical purposes, fungi are the only agents of wood decay. There are other kinds of deterioration, by insects, marine animals, ultraviolet light, etc., but this is not decay, nor is it quantitatively as important as decay.

Wood decay is hugely important economically and ecologically:

  • It recycles the elements in wood.
  • Decaying wood creates important habitat for wildlife, insects, mycorrhizal tree roots, fungi, and biodiversity in general.
  • The recalcitrant products of decay, especially brown rot, are incorporated into soil, where they increase moisture-holding capacity and cation-exchange capacity (increasing soil storage for water and nutrients).
  • Many of the most important tree diseases, such as stem decays and root diseases, involve wood decay.
  • Decay of wood in trees on developed sites and urban landscapes is an important cause of tree hazard by creating tree defects that increase the likelihood of mechanical failure.
  • Wood decay is economically very important for wood products in service (buildings, bridges, utility poles, fences, etc.)

This page has general information on wood decay (wood rot). You may be interested in more specific information about diseases involving decay in tree stems and roots.

You can find annotated lists of some decays important in North America here.

Contents of this page :

Wood anatomy and chemistry

In order to learn important things about wood decay, you need to know the essential basics of wood anatomy and chemistry.  Here are two tables that provide a very concise start.

Cell Types in Wood

 Softwood (Conifer)Hardwood (Angiosperm)Both
Cell TypeTracheidEpithelial CellsVessel ElementsFiberParenchyma
Functionsap conduction + supportProduce resinsap conductionsupportstorage, defense
Shapelong, narrowshort, wideshort, narrowvarious
Arrangementconnected with pitsMake up the perimeter of resin canalsconnected end to end into long vesselsconnected with narrow pitsOriented radially in rays and, in hardwoods, longitudinally near vessels

In other words:

  • Conifers use tracheids for BOTH water conduction and strength/support. These cells die after formation.
  • Hardwoods divide those functions into two cell types: vessel elements for conduction, and fibers for support. These also die after formation.
  • All trees also have parenchyma cells. These living cells can store food and actively defend around wounds, fungal attack, etc.
  • Finally, most conifers also have epithelial cells, which make up the walls of resin canals. They produce resin as a defense mechanism.
  • Parenchyma and epithelial cells die during the transformation of sapwood to heartwood. They also die behind cambium that is killed by wounding, disease, or insect attack.

Wood Chemistry

ComponentApproximate composition by weightStructure
Cellulose50%linear chains of glucose (beta-bond)
Hemicellulose25%branched chains of various sugars
Lignin25%A complex, cross-linked polymer based largely on phenylpropanoid units
Approximate monomer of lignin

Types of decay

Types of Wood Decay

White RotBasidiomycota±bleachedfibrousall components removed
Brown RotBasidiomycota± brownfibrous texture lost early, cross-checkingprimarily carbohydrates lost, lignin mostly remains
Soft RotAscomycotableached or brownusually on surface, some fibrous texture lost, cross-checking in some casescarbohydrates preferred, but some lignin lost too

White rot

In white rot, all wood components are destroyed. The components remain in roughly the same proportion throughout decay as in the sound wood. White rot is fibrous because some cellulose remains intact until very late stages of decay. It is typically less fibrous in hardwoods than in softwoods because of the shorter fibers in hardwoods. It usually turns whitish because of bleaching by oxidation and loss of lignin, which is slightly brown. Color and texture vary among white rots caused by different fungi:

White pocket rot caused by Porodaedalea pini.The wood in the pockets is selectively delignified, leaving nearly pure cellulose. Photo by Dr. R. Blanchette; used with permission.
  • stringy white rot
  • spongy white rot
  • laminated white rot (separation of annual rings)
  • mottled white rot
  • white pocket rot
  • zone lines sometimes present

In some white rots, there is a phenomenon called selective delignification. All components are removed, but the relative rate varies. Lignin and hemicelluloses are selectively removed in early stages. This leaves enriched cellulose. This is what happens in the white regions of a mottled rot and in the pockets of a white pocket rot. There is a tremendous amount of interest in using these fungi in industry, because many uses of wood involve removing lignin (e.g., biopulping).


In Chile, selectively delignified wood of the genus Nothofagus occurs in large amounts.  It is mostly associated with decay by Ganoderma species and is called palo podrido.  Dr. Robert Blanchette reports that Indians in Chile have (had) a god called Trauco.  Trauco lives in the forest and looks like a man but has cloven feet.  Trauco represents fertility, perhaps in much the same way as Kokopelli of the Indians of southwestern North America. Unwed women who got pregnant often said that Trauco had visited them and he was responsible for their pregnancy. Trauco eats palo podrido, and there are reports that Indians did as well, perhaps to enhance fertility.

In selectively delignified wood there are often pockets of clear, gelatinous remnants of the wood. Armillaria species in particular often cause these gelatinous pockets. This may become colonized by yeast and may contain alcohol. We don’t know what role this may play in the legend, but one noted forest pathologist who was trying to have kids ate some Armillaria jelly while on a trip and his wife became pregnant soon after!

Incidentally, the delignified wood is quite useful as fodder for ungulates. It can be readily broken down with the aid of microorganisms in their gut. Even in Alaska, I have seen evidence that moose have fed on logs decayed by Ganoderma applanatum!

Brown Rot

Brown rot is brown because carbohydrates are removed, leaving brownish, oxidized lignin. There is no fibrous texture because the cellulose is broken up early. The wood shrinks on drying and cross-checking is seen in later stages. It is often called “cubical” brown rot for that reason.

The initial stage of brown rot is non-enzymatic. The fungus produces some small chemical agent (involving oxalic acid and hydrogen peroxide) that zips around in the cell wall like a little pair of scissors, snipping chains of cellulose and hemicellulose into smaller pieces. This happens throughout the wall in fairly early stages. The carbohydrates become partly soluble, enzymes work on them, releasing sugars, and they are slowly absorbed by the fungus.

There is a handful of brown pocket rots, and they are very cool and special. They only develop in living trees, and often in tree species that have unusually durable wood, with otherwise highly effective antifungal chemicals in the heartwood. One can speculate that the occurrence of brown pocket rots in such tree species is probably related to the chemical protection of the wood, but how is a mystery that is yet to be solved.  Are they using the sound wood around the pockets as a chemical waste dump?

Soft Rot

Soft rot is not known to occur in living trees. It is important in degradation of wood in service. The best known feature is the curious angular cavities in the secondary wall, but they are not always present.

Terms for position of decays

Decay terms by position in the tree.
Decay in sapwood vs. heartwood.

In general, live trees tend to decay from the inside out and dead trees from the outside in. There are various reasons for this, but it is largely due to the fact that sapwood has a very effective active resistance when the tree is alive but virtually no resistance once the tree is dead.

The terms relating to position of decay in the tree are just approximations; the fungi are not necessarily restricted to these regions.

In addition to the terms illustrated at the right (top rot, stem or trunk rot, butt rot, root rot), two that you run into are heart rot and sap rot. Heart rot is often defined as decay in living trees. Some define it as decay that develops primarily in the heartwood or inner wood of living trees. It is usually used to refer to decays that primarily develop in the stem rather than in the roots and butt. Sap rot may refer to saprobic decays or to those that develop in the sapwood. Usually sapwood decays extensively only in dead trees. But there are some fungi that commonly decay sapwood in living trees, usually causing cankers. Such diseases are known as canker-rots. Also keep in mind that saprobic fungi can and do decay dead wood in living trees.

Here we use the term stem decay for all diseases where the primary symptom is decay of stem wood, largely because ‘heart rot’ is thought by some some to imply that decay is restricted to heartwood, which is frequently not the case.

Another term you see is slash rot, simply referring to decay of dead material, particularly branches and tops that are left behind after logging.

Disease Cycle of Decays

Refer to the life cycle of a polypore, as it is closely related to the disease cycle. Two points need to be added. First, decay occurs for many years, between the stages of plasmogamy and fruiting, and fruiting may continue for many years. Second, dispersal and infection court are important issues:

Dispersal is by spores:

  • Spores may be released for a few days (mushrooms) or for six months or more per year (perennial conks).
  • Up to 300 billion spores per day are produced by some conks!
  • The spores are carried by wind. They are in suspension in air and can travel many miles even in light breeze.
  • Some decay fungi have a conidial stage in culture but those are rarely found in nature and their importance is unknown.

Infection court is invariably non-living wood

Fire scars:
Early studies suggested that fire scars are the most important, both in hardwoods of SE and in conifers of the west. That will be less true where fire scars are uncommon.
Broken tops (from glaze or snow storms, leading to top rot), treefall scars, animal damage (such as deer scraping off velvet, cattle damage to root collar, even bears in one case), logging scars, carving and hatchet marks. Logging injuries are an important infection court that we can manage to reduce butt rot and stem decay. Damage from pruning can be minimized by knowing how to prune (Forest Service on-line info).
Branch stubs:
Even dead twigs down to few mm diam. can be infection court for some fungi, such as Porodaedalea pini. The same fungus also can infect through white pine leaders killed by white pine weevil. Stubs/twigs also important for Stereum sanguinolentum and Echinodontium tinctorium.
Primarily root- and butt-rot fungi get in this way. See the page on root diseases for more details.
Cankers, mistletoe infections, necrotic galls:
These sites may eventually become infected by decay fungi, which may lead to stem breakage.

Tree resistance

Callus formation following wounding in trees.

Trees have several mechanisms of resistance against decay fungi. Bark is the first line of defense. No stem-decay fungi are known to infect through intact bark.

Sapwood is capable of active response to invasion. Parenchyma cells in sapwood sense the presence of the fungus and initiate a doomsday response. A terminal metabolism kills them, but results in conditions that are unfavorable for fungi. Chemicals limit the progress of the fungi. Second, in many conifers, resin is piped in to seal off the area. Third, the cambium responds to trauma by producing a fairly effective wall in the xylem at that point that often restricts an invader to the wood laid down before then. The wall may extend for some distance away from the invasion or wound.

Heartwood resistance is very different from sapwood resistance. Heartwood is dead and there is no active resistance. Instead, chemicals are deposited in heartwood as it forms by dying parenchyma. They render it more or less inhospitable to fungi. Species vary greatly in heartwood resistance. Redwood, cedars are very high; aspen, birch are very low. Nevertheless, every tree has at least a few fungi that have learned to live in its heartwood and cause heart rot.

Now, knowing the difference between sapwood resistance and heartwood resistance, you can begin to understand the difference in the pattern of decay in living and dead trees that we saw above.

Decay of wood in service, stains

Products deterioration

Buildings, decks, railroad ties, utility poles, bridges, ladders, horticultural uses, etc.

Losses: no good figures, but it is said that 10% of annual cut goes to replace decayed wood. Doesn’t include cost of replacement, liability, cost of preservative treatment.

Moisture content: dry wood won’t decay (and you can take that to the bank: “dry rot” is a misnomer). If you add water to dry wood, it goes to satisfy need of walls, which absorb water. Up to moisture content of 28% (that’s dry weight basis, so 28 g water per 100 g dry wood), added water goes into wall. Above that, you get free water in the lumens. That point is called fiber saturation point. Decay fungi require free water. So wood must be above FSP to decay. For practical purposes, a value of 20% is used as a cutoff, leaving a margin for error. Thus, processors and users should keep wood below 20% moisture content to avoid decay.

Control – 3 approaches

  1. Keep wood dry. For practical purposes, and a margin of error, the rule is keep it at below 20% moisture content (dry-wood basis). Good construction practices with this in mind are important in buildings, but many construction people and even architects do things wrong.
  2. Use durable wood. But it must be heartwood!
  3. Use preservatives. Ideally they should be pressure-impregnated. Painting/dipping are much less effective. Not all wood species treat well, some won’t accept it.
    • Creosote – byproduct of coal -› coke for steel, first good preservative, still used.
    • Pentachlorophenol – nasty chemical with even nastier contaminant (dioxin). Still used to some extent but not where human exposure is likely.
    • CCA – Chromated copper arsenate. Sounds worse than it is. The chemicals get fixed, or bound to the wood so don’t leach out. Safe to handle. Wood treated with CCA or similar chemicals available at lumber stores to general public. Sometimes not as effective as other preservatives though.


There are many different wood conditions grouped under the term stain, with many different causes. The only one we need to really be concerned with here is blue stain.

This is a blue-grey stain of wood that can tend to being black. It is caused by ascomycetes or deuteromycetes that have dark brown hyphae. The way light goes through the wood, it ends up looking bluish grey.

The most common and well-known form of blue stain is found in conifers, especially pines, that have been invaded by bark beetles. The beetles either kill the tree or invade it as it is dying. They carry with them a fungus in a group we will just call by the genus Ophiostoma.

When the beetles attack, they inoculate the tree with their fungus. The fungus invades the wood, but especially the rays and the resin canals. The rays are heavily colonized. When you look closely at the wood, you can often see dark streaks where the resin canals were stuffed with hyphae. Such wood is common after salvage operations (harvesting recently killed trees), and when logs are stored after cutting under conditions that permit beetle attack.

One hypothesis on the relationship is that the fungus helps the insect by killing cells in the sapwood such as rays and resin canal cells. This reduces the host reaction against the beetle. Another is that the fungi may produce chemicals that are important in beetle maturation. Other things may be involved. In turn, the beetles provides the fungus with vectoring services. This is a symbiosis.

The fungus does not decay the wood, although some strength may eventually be lost. It is used for many purposes such as plywood, rough lumber, etc. It may even be sold as special decorative wood (“blue pine”).

Important Decays

Here are tables of some decays important in North America.